Hypochlorous acid (HOCl) has received special attention by virtue of its pivotal antimicrobial nature, and the appropriate amount of HOCl is beneficial to innate immunity of host to cope with microbial invasion. However, the uncontrollable accumulation of HOCl is implicated in many human diseases and even cancers. Thus, to determine its deeper biological functions, it is significantly important to specifically monitor intracellular HOCl in biosystems. Herein, we rationally designed a simple fluorescent probe FH-HA on the basis of the formylhydrazine recognition receptor and rhodamine B fluorophore. It is worth noting that the formylhydrazine moiety for the first time is adopted as the recognition receptor for specifically recognizing HOCl. Additionally, probe FH-HA also exhibited excellent performance in many areas including satisfactory water-solubility, high specificity, and excellent sensitivity. Notably, probe FH-HA could quickly respond to HOCl (within 3 s), which facilitates the tracing of transient HOCl. More importantly, probe FH-HA was capable of specifically tracing the fluctuations of endogenous HOCl in living cells and zebrafish, and it could monitor basal HOCl in cancer cells to distinguish cancer cells from normal ones.