The Savannah Sparrow (Passerculus sandwichensis) is a widespread and common North American bird that shows both geographic variation and sexual dimorphism in size. I used information from 24 measurements on 1,791 individuals from 51 populations to test two hypotheses (sexual-selection and niche-partitioning) about the evolution of sexual dimorphism. Throughout their range male Savannah Sparrows are larger, on average, than females. This doubtless reflects Darwinian sexual selection, for territorial fights usually involve males, many of whom fail to obtain mates. In some parts of their range, Savannah Sparrows are commonly polygynous, whereas in others they are characteristically monogamous. Among species of American sparrows (subfamily Emberizinae) sexual size dimorphism is generally greater in polygynous species than in monogamous ones. However, I did not find a similar trend among populations of Savannah Sparrows. The amount of dimorphism in all populations of Savannah Sparrows is equivalent in magnitude to that of other species of sparrows that are commonly or regularly polygynous, and it is greater than that of other sparrow species that are characteristically monogamous. The amount of sexual dimorphism, either in overall size or in bill size, does not correlate with species diversity and does not differ between island and mainland populations. These results do not support the niche-variation hypothesis. Size dimorphism is relatively great in populations of Savannah Sparrows that are resident in southwestern salt marshes, and these birds are the only sparrow-like birds that generally breed in these marshes. Dimorphism is, in general, relatively great in marsh-dwelling species in the family Emberizidae. These species are commonly, but not always, polygynous; the mating systems of the salt-marsh Savannah Sparrows are not known. There are no significant differences in the extent of dimorphism among populations of salt-marsh sparrows, and there are few among the non-salt-marsh ones, probably reflecting conservatism in the evolution of size dimorphism.
Read full abstract