ConspectusHere, we discuss recent advances and pressing challenges in achieving sustainable urea synthesis. Urea stands out as the most prevalent nitrogen-based fertilizer used across the globe, making up over 50% of all manufactured fertilizers. Historically, the Bosch-Meiser process has been the go-to chemical manufacturing method for urea production. This procedure, characterized by its high-temperature and high-pressure conditions, reacts ammonia with carbon dioxide to form ammonium carbamate. Subsequently, this ammonium carbamate undergoes dehydration, facilitated by heat, producing solid urea. A concerning aspect of this method is its dependency on fossil fuels, as nearly all the process heat comes from nonrenewable sources. Consequently, the Bosch-Meiser process leaves behind a considerable carbon footprint. Current estimates predict that unchecked, carbon emissions from urea production alone might skyrocket, reaching a staggering 286 MtCO2,eq/yr by 2050. Such projections paint a clear picture regarding the necessity for more eco-friendly, sustainable urea production methods. Recently, the scientific community has shown growing interest in forming C-N bonds using alternative methods. Shifting toward photochemical or electrochemical processes, as opposed to traditional thermal-based processes, promises the potential for complete electrification of urea synthesis. This shift toward process electrification is not just an incremental change; it represents a groundbreaking advancement, the first of many steps, toward achieving deep decarbonization in the chemical manufacturing sector. Since the turn of 2020, there has been a surge in research focusing on photochemical and electrochemical urea synthesis. These methods capitalize on co-reduction of carbon dioxide with nitrogenous reactants like NOx and N2. Despite the progress, there are significant challenges that hinder these processes from reaching their full potential. In this comprehensive review, we shed light on the advances made in electrified C-N bond formation. More importantly, we focus on the invaluable insights gathered over the years, especially concerning catalytic reaction mechanisms. We have dedicated a section to underline key focal areas for up-and-coming research, emphasizing catalyst, electrolyte, and reactor design. It is undeniable that catalyst design remains at the heart of the matter, as managing the co-reduction of two distinct reactants (CO2 and nitrogenous species) is complex. This process results in a myriad of intermediates, which must be adeptly managed to both maintain catalyst activity and avoid catalyst deactivation. Moreover, the electrolytes play a pivotal role, essentially dictating the creation of optimal microenvironments that drive reaction selectivity. Finally, reactor engineering stands out as crucial to ensure optimal mass transport for all involved reactants and subsequent products. We touch upon the broader environmental ramifications of urea production and bring to light potential obstacles for alternative synthesis routes. A notable mention is the urgency of accelerating the uptake and large-scale implementation of renewable energy sources.