Unsustainable pig breeding is a great threat to the environment. Ammonia is one of the main pollutants emitted in piggery vent air. This work is a comparative survey that presents the findings on the effectiveness of ammonia adsorption from air using various activated carbons (ACs). Detailed consideration is given to the effects of (i) type of raw material (wood char, wood pellet, and commercial lignite-based char), (ii) preparation method (CO2, steam, and KOH activation), and (iii) activation conditions (temperature and KOH/char ratio), on the porous structure of ACs and their ammonia sorption capacity and reversibility. Response surface methodology and genetic algorithm were used to find optimum KOH activation conditions. Economic analyses of AC production were performed using process modeling in Aspen software. It was found that ACs obtained from wood char in KOH activation show a maximum ammonia capacity of 397 g/kg, which is at least 2.5-fold higher than that reached on ACs from physical activation. A lower activation temperature (<750 °C) and a higher KOH/char ratio (>3) were preferred for effective adsorption, regardless of the type of feedstock. High sorption reversibility was achieved (87–96%). This makes the obtained sorbents promising sorbents for ammonia removal from piggery vent air with potential subsequent application as nitrogen-enriched biochar for crop fertilization. Thus, it facilitates sustainable pig breeding.
Read full abstract