ObjectivesThe primary aim was to explore the impact of exertional-heat stress (EHS) promoted exercise-associated bacteraemia. A secondary aim was to examine if an amino acid beverage (AAB) intervention may mitigate exercise-associated bacteraemia. DesignCounterbalanced randomised control trial. MethodsTwenty endurance trained male participants completed two randomised EHS trials. On one occasion, participants consumed a 237 mL AAB twice daily for 7 days prior, immediately before and every 20 min during EHS (2 h running at 60 % V̇O2max in 35 °C). On the other occasion, a water volume control (CON) equivalent was consumed. Whole blood samples were collected pre- and immediately post-EHS, and were analysed for plasma DNA concentration by fluorometer quantification after microbial extraction, and bacterial relative abundance by next generation 16s rRNA gene sequencing. ResultsIncreased concentration of microbial DNA in plasma pre- to post-EHS was observed on CON (pre-EHS 0.014 ng/μL, post-EHS 0.039 ng/μL) (p < 0.001) and AAB (pre-EHS 0.015 ng/μL, post-EHS 0.031 ng/μL) (p < 0.001). The magnitude of change from pre- to post-exercise on AAB was 40 % lower, but no significant difference was observed versus CON (p = 0.455). Predominant bacterial groups identified included: phyla-Proteobacteria (88.0 %), family-Burkholderiaceae (59.1 %), and genus-Curvibacter (58.6 %). No significant variation in absolute and relative change in α-diversity and relative abundance for phyla, family, and genus bacterial groups was observed in AAB versus CON. ConclusionsThe increased presence of microbial-bacterial DNA in systemic circulation in response to EHS appears positive in all participants. An amino acid beverage supplementation period prior to and consumption during EHS did not provide significant attenuation of EHS-associated bacteraemia.
Read full abstract