Acute respiratory distress syndrome (ARDS) is characterized by protein rich edema due to alveolar-capillary barrier dysfunction caused by inflammatory processes. Currently, our understanding of the inflammatory response in patients with ARDS is mainly based on assessment of the systemic compartment and preclinical studies. Investigations into the intricate network of immune cells and their critical functions in the alveolar compartment remain limited. However, with recent improvements in single cell analyses, our comprehensive understanding of the interactions between immune cells in the lungs has improved. In this review, we summarize the current knowledge about the cellular composition and interactions of different immune cell types within the alveolar space of patients with ARDS. Neutrophils and macrophages are the predominant immune cells in the alveolar space of ARDS patients. Yet, all immune cells present, including lymphocytes, participate in complex interactions, coordinate recruitment, modulate the lifespan and control apoptosis through various signaling pathways. Moreover, the cellular composition of alveolar immune cells is associated with clinical outcomes of ARDS patients. In conclusion, this synthesis advances our understanding of ARDS immunology, emphasizing the crucial role of immune cells within the alveolar space. Associations between cellular composition and clinical outcomes highlight the significance of exploring distinct alveolar immune cell subsets. Such exploration holds promise for uncovering novel therapeutic targets in ARDS pathophysiology, presenting avenues for enhancing clinical management and treatment strategies for ARDS patients. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Read full abstract