The purpose of the study is to assess the possibilities of using groundwater for water supply in the East European Arctic agglomeration based on an assessment of their quality and health risks. For this purpose, high-precision determinations of the complete macro- and microcomponent composition were carried out in sixty-six water samples taken from wells up to 180 m deep. It was found that in some samples the concentrations of Na+, Fe, B, Ba, Mn and U exceeded WHO standards. The least mineralized young waters are characterized by the processes of dissolution of carbonates with the transition of Ca, Mg, Ba, Sr into water, and the processes of leaching of Fe and Mn by acidic swamp waters from near-surface sediments. Waters of high mineralization, enriched in Na+, Cl-, B, Mo, Cd, Pb, were formed as a result of the dissolution of aluminosilicate rocks over thousands of years and mixing with relics of ancient and modern marine transgressions. An assessment of the average Water Quality Index value of the studied aquifer showed that, in general, the water is of excellent quality. Non-carcinogenic risks were determined primarily by uranium concentrations. The average danger index values for this element for children were 1.22. In adults it was slightly lower and amounted to 0.83. Carcinogenic risks are associated primarily with arsenic concentrations. The average total carcinogenic risk associated with this element was 3.8.10−5, which is acceptable, but samples from two wells showed total carcinogenic risk values above 10−4, which is in the high-risk area. For drinking purposes, it is preferable to use low-mineralized water with a minimum content of toxic elements. If necessary, preliminary aeration of the water is possible, during which precipitation of iron, arsenic and uranium occurs. Due to the typical nature of the problem under consideration for the Arctic regions, the results obtained can be used at other sites in the Subpolar zone.
Read full abstract