Aluminum is a prevalent element in nature, but bioavailable forms of aluminum are toxic to plants, animals, and humans. The present study is dedicated to the development of an ecologically friendly, fast, simple, reliable, sensitive, and accurate improved procedure for the determination of subtrace concentrations of bioavailable forms of aluminum in natural waters. The procedure includes the separation and pre-concentration of bioavailable forms of aluminum using vortex-assisted liquid-liquid microextraction (VALLME) of ionic associates with salicylaldehyde 4-picolinhydrazone (SAPH) and sodium dodecyl sulfate (DDSNa) by isoamylacetate (200μl) and direct electrothermal atomic absorption spectroscopy (ETAAS). The SAPH reagent interacts only with water-soluble forms of aluminum. SAPH is used for the pre-concentration of bioavailable forms of aluminum as well as a chemical modifier; it increases the absorbance and the precision of the analytical signal of aluminum. The calibration curve shows the linear dependence in the range of 0.05-86μg⋅L-1 of the aluminum concentration (R2 = 0.992), with the limit of detection at 0.015μg⋅L-1 and the limit of quantification at 0.05μg⋅L-1. The accuracy of the proposed procedure for bioavailable forms of aluminum determination was verified on model solutions and against a reference method on natural samples of river and lake waters (RSD 3.2-5.2%, recovery 97.1-103.4%).
Read full abstract