Backgroud aimsRegenerative therapies employing cell therapy products (CTPs) have attracted considerable attention. Biodistribution (BD) evaluation of CTPs is mainly performed to clarify the cell survival time, engraftment, and distribution site. This evaluation is crucial for predicting the efficacy and safety profiles of clinical studies based on non-clinical BD study outcomes. However, no internationally unified method has been established for assessing cell BD after administration. Here, we aimed to standardize the BD assay method used for CTPs, conducting the following evaluations using the same protocol across multiple study facilities: (1) in vitro validation of quantitative polymerase chain reaction (qPCR) and droplet digital PCR (ddPCR) analyses using the primate-specific Alu gene, and (2) in vivo BD studies after the intravenous administration of human mesenchymal stem cells (hMSCs) to immunodeficient mice, commonly used in non-clinical tumorigenicity studies. MethodsQuality control samples were prepared and analyzed by adding a fixed number of human-derived cells to several mouse tissues. The respective quantitative performances of the qPCR and ddPCR methods were compared for accuracy and precision. hMSCs were intravenously administered to immunodeficient mice, and tissues were collected at 1, 4, and 24 h after administration. ResultsBoth methods demonstrated an accuracy (relative error) generally within ±50% and a precision (coefficient of variation) generally less than 50%. While differences in calibration curve ranges were observed between qPCR and ddPCR, no significant differences in quantification were found among the assay facilities. The BD of hMSCs in mice was evaluated at seven facilities (qPCR at three facilities; ddPCR at four facilities), revealing similar tissue distribution profiles in all facilities, with the lungs showing the highest cell distribution among the tissues tested. ConclusionsQuantitative evaluation of qPCR and ddPCR using Alu sequences was conducted, demonstrating that the test method can be adapted for BD evaluation.
Read full abstract