The eastern Andean treeline (EATL) is the world’s longest altitudinal ecotone and plays an important role in biodiversity conservation in the context of land use/cover and climate change. The purpose of this study was to assess to what extent the position of the tropical EATL (9°N–18°S) is in near-equilibrium with the climate, which determines its potential to adapt to climate change. On a continental scale, we have used land cover maps (MODIS MCD12) and elevation data (SRTM) to make the first-order assessment of the EATL position and continuity. For the assessment on a local scale and to address the three-dimensional nature of environmental change in mountainous environments, a novel method of automated delineation and assessment of altitudinal transects was devised and applied to Landsat-based forest maps (GLAD) and fine-resolution climatology (CHELSA). The emergence of a consistent longitudinal gradient of the treeline elevation over half of the EATL extent, which increases towards the equator by ~30 m and ~60 m per geographic degree from the south and north, respectively, serves as a first-order validation of the approach, while the local transects reveal a more nuanced aspect-dependent pattern. We conclude that the applied dual-scale approach with automated mass transect sampling allows for an improved understanding of treeline dynamics.
Read full abstract