Albuminuria is a hallmark of diabetic nephropathy (DN). Podocyte injury significantly contributes to proteinuria in DN. Our study found that lncRNA EVF-2 is upregulated in podocytes of DN patients, correlating with cell cycle re-entry and inflammation. Specific knockout or knockdown of lncRNA evf-2 in diabetic mice or cultured podocytes alleviated podocyte injury associated with these processes. RNA sequencing of evf-2-overexpressing podocytes unveiled a predominant enrichment of upregulated mRNAs in cell cycle and inflammation pathways, with alternative splicing in cell cycle-related mRNAs Ccnb1 and Tacc3. Chromatin isolation by RNA purification-mass spectrometry (ChIRP-MS) analysis highlighted the involvement of ribonucleoprotein complex and mRNA processing-related proteins, with hnRNPU as the main binding partner of evf-2 in spliceosomes. Knockdown of hnRNPU partially restored the upregulation of mRNAs induced by evf-2 overexpression, altering splice variants of Ccnb1 and Tacc3. This study is the first to reveal the splice variants of cell cycle-related genes in DN and elucidate the interaction between lncRNA evf-2 and hnRNPU. This interaction culminates in the upregulation of cell cycle-related genes and inflammatory factors through diverse pathways, potentially involving transcriptional activation, RNA stability modulation, alternative splicing or translational regulation. This highlights potential novel pathways for DN treatment.