Internal solitary waves are a widely observed phenomenon in natural waters. Mathematically, they are fundamentally a nonlinear phenomenon that differs from the paradigm of turbulence, in that energy does not move across scales. Internal solitary waves may be computed from the Dubreil–Jacotin Long equation, which is a scalar partial differential equation that is equivalent to the stratified Euler equations. When a background shear current is present the algebraic complexity of the problem increases substantially. We present an alternative point of view for characterizing the situation with a shear current using Lagrangian (particle-like) models analysed with graph theoretic methods. We find that this yields a novel, data-centric framework for analysis that could prove useful well beyond the study of internal solitary waves.
Read full abstract