From the recent genome assembly NHGRI_mPonAbe1-v2.0_NCBI (GCF_028885655.2) of orangutan chromosome 13, we computed the precise alpha satellite higher-order repeat (HOR) structure using the novel high-precision GRM2023 algorithm with Global Repeat Map (GRM) and Monomer Distance (MD) diagrams. This study rigorously identified alpha satellite HORs in the centromere of orangutan chromosome 13, discovering a novel 59mer HOR-the longest HOR unit identified in any primate to date. Additionally, it revealed the first intertwined sequence of three HORs, 18mer/27mer/45mer HORs, with a common aligned "backbone" across all HOR copies. The major 7mer HOR exhibits a Willard's-type canonical copy, although some segments of the array display significant irregularities. In contrast, the 14mer HOR forms a regular Willard's-type HOR array. Surprisingly, the GRM2023 high-precision analysis of chromosome 13 of human genome assembly T2T-CHM13v2.0 reveals the presence of only a 7mer HOR, despite both the orangutan and human genome assemblies being derived from whole genome shotgun sequences.
Read full abstract