BackgroundAlpha-methylacyl-CoA racemase (AMACR) deficiency is a rare peroxisomal enzyme deficiency caused by biallelic variants in the AMACR gene. This deficiency leads to the accumulation of toxic bile acid intermediates (R)-trihydroxycholestenoic acid (THCA) and (R)-dihydroxycholestenoic acid (DHCA) and pristanic acid. With less than 20 patients described in literature, the phenotype of AMACR deficiency is poorly defined and no data on the natural history are available.ResultsHere we describe a cohort of 12 patients (9 adults and 3 children) with genetically confirmed AMACR deficiency (median age at diagnosis 56 years, range 3–69), followed for an average of 6 years (between 2015 and 2023). Five novel pathogenic variants are described. In 5/9 adult patients, retinitis pigmentosa was detected at a median age of 45 years (range 30–61). The median delay to diagnosis of AMACR deficiency after the diagnosis of retinitis pigmentosa was 24 years (range 0–33). All adult patients subsequently developed neurological signs and symptoms after the age of 40 years; most frequently neuropathy, ataxia and cognitive decline with prior normal cognitive functioning. One patient presented with a stroke-like episode. All adult patients showed a typical MRI pattern involving the thalami and gray matter structures of the pons and midbrain. One patient had a hepatocellular carcinoma at the time of the AMACR deficiency diagnosis and two patients suffered from gallstones. All three included children had elevated liver transaminases as single presenting sign and showed no brain MRI abnormalities.ConclusionAMACR deficiency can be considered as an adult slowly progressive disease with a predominant neurological phenotype. The main signs comprise retinitis pigmentosa, neuropathy, ataxia and cognitive decline; stroke-like episodes may occur. Recognition of typical MRI abnormalities may facilitate prompt diagnosis. In addition, there is a risk of liver fibrosis/cirrhosis and hepatocellular carcinoma in these patients, requiring active monitoring.
Read full abstract