Pregnancy-induced analgesia develops in late pregnancy, but its mechanisms are unclear. The anterior cingulate cortex (ACC) plays a key role in the pathogenesis of neuropathic pain. The authors hypothesized that pregnancy-induced analgesia ameliorates neuropathic pain by suppressing activation of microglia and the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and by upregulating opioid receptors in the ACC in late-pregnant mice. Neuropathic pain was induced in non-pregnant (NP) or pregnant (P) C57BL/6JJmsSlc female mice by partial sciatic nerve ligation (PSNL). The nociceptive response was evaluated by mechanical allodynia and activation of microglia in the ACC was evaluated by immunohistochemistry. The expressions of phosphorylated AMPA receptors and opioid receptors in the ACC were evaluated by immunoblotting. In von Frey reflex tests, NP-PSNL-treated mice showed a lower 50% paw-withdrawal threshold than NP-Naïve mice on experimental day 9. No difference in 50% paw-withdrawal threshold was found among the NP-Naïve, NP-Sham, P-Sham, and P-PSNL-treated mice. The number of microglia in the ACC was significantly increased in NP-PSNL-treated mice compared to NP-Sham mice. Immunoblotting showed significantly increased expression of phosphorylated AMPA receptor subunit GluR1 at Ser831 in NP-PSNL-treated mice compared to NP-Sham mice. Immunoblotting also showed significantly increased δ-opioid receptor in the ACC in P-Sham and P-PSNL-treated mice compared to NP-Sham mice. Pregnancy-induced analgesia ameliorated neuropathic pain by suppressing activation of microglia and the expression of phosphorylated AMPA receptor subunit GluR1 at Ser831, and by upregulation of the δ-opioid receptor in the ACC in late-pregnant mice.
Read full abstract