Keratinocyte migration into skin wounds is the step of the healing process that correlates with the wound closure rate. Keratinocyte migration, and wound epithelialization are decreased when beta 2-adrenergic receptors (B2AR) are activated by 1 μM epinephrine/adrenaline, resulting in delayed wound healing in human and mouse skin. In the present study, we found paradoxically, that in a subset of keratinocyte strains exposure to low concentrations of epinephrine (0.1 nM) increased, rather than decreased, their migratory rate. We find that both the alpha- and the beta-adrenergic receptors are expressed in human keratinocytes, and expression of alpha-2 AR subtypes demonstrated for the first time. Therefore, we tested if the alpha-AR could be modulating the increased migratory response observed in these cell strains. By using specific inhibitors to alpha-AR, we demonstrated that blocking A2B-AR could reverse the rapid cell migration induced by the 0.1 nM epinephrine. Phosphorylation of ERK was elevated after 1–10 minutes of the low epinephrine treatment and the A2B-AR inhibitor blocked the ERK phosphorylation. The results suggest that both the A2B-AR and B2AR mediate keratinocyte migration, in which with a low level of epinephrine treatment, A2B-AR could alter the B2AR signals and regulate the migration rate.
Read full abstract