Rapid solidification is a typical non-equilibrium phase transition process, and the crystallization rate of liquid metal is larger than 1 cms-1. If the alloy is solidified in this case, the solute segregation is reduced or even eliminated and the solid solubility can be improved significantly. Rapid solidification technique can be used to refine the microstructures of alloys, which provides an effective method to prepare the novel metastable materials and improve their strengths, plasticities magnetic properties, etc. In this work, the rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy are investigated by drop tube and melt spinning techniques. It is known that Fe-Cu-Sn ternary alloy forms a typical immiscible system. However, the experimental results reveal that the liquid phase separation does not take place during the rapid solidification of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. The solidification microstructures are all composed of primary Fe dendrites together with Cu3Sn and Cu6Sn5 phases. Under the free fall condition, as the drop tube technique provides microgravity and containerless states, the maximum surface cooling rate and maximum undercooling of alloy droplets are 1.3105 Ks-1and 283 K (0.19 TL), respectively. When the surface cooling rate reaches 1.9103 Ks-1, the primary Fe phase appears as coarse dendrites, and its maximum dendrite length is 41 m. Meanwhile, the Cu3Sn and Cu6Sn5 phases are distributed in the Fe interdendritic spacings. Once the surface cooling rate increases up to 3.3103 Ks-1, the morphology of the primary Fe phase transforms from coarse dendrites into broken dendrites. It is found that the cooling rate and undercooling greatly affect the solidification microstructure of alloy droplets. During the melt spinning experiments, since the large temperature gradient exists between the wheel surface and free surface, the solidification microstructure is subdivided into two crystal zones according to the different microstructure morphologies of Fe phase: fine grain (zone I) and coarse grain (zone II), where zone I is characterized by granular grains while zone II has some dendrites with secondary branch. Under the rapid cooling condition, the microstructures of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy ribbons are refined significantly and show soft magnetic characteristics. As the surface cooling rate increases from 8.9106 to 2.7107 Ks-1, the lattice constant of Fe solid solution rises rapidly and the coercivity increases from 93.7 to 255.6 Oe. Furthermore, the results indicate that the grain size of Fe phase is the main factor influencing the coercivity of alloy ribbons.