Population growth and economic development, particularly in developing market nations, are driving up global energy consumption at an alarming rate. Despite increased wealth, growing demand presents new obstacles. Computer Numerical Control (CNC) machine tools are widely used in most metal machining processes due to their efficiency and repeatability in achieving high-precision machining. It has been shown that figuring out the best cutting parameters can improve the results of machining, leading to high efficiency and low costs. This study identifies and examines thoroughly the scientific contributions of the influence of strategies, machining sequences, and cutting parameters on surface quality, machining cost, and energy consumption (QCE) using artificial intelligence (ANN and ANFIS). The results show that the 3.10−3 architecture with the Bayesian Regularization (BR) algorithm is the optimal neural architecture that yields an overall mean square error (MSE) of 2.74 10−3. The correlation coefficients ( R2) for Etot, Ctot, and Ra are 0.9992, 1, and 0.9117 respectively. Similarly, for the adaptive neuro-fuzzy inference system (ANFIS), the optimal structure which gives a better error and better correlation is the {2, 2, 2} structure, and this for the three output variables (Etot, Ctot, and Ra). The correlation coefficient ( R2) for the variables Etot, Ctot, and Ra are respectively 0.95, 0.965, and 0.968. The results show that the use of the Bayesian Regularization algorithm with a multi-criteria output response can give good results when compared with the adaptive neuro-fuzzy inference system.
Read full abstract