The use of deuterocarbons is an effective method in the Raman spectroscopy of multicomponent lipid materials and biological samples. Here, Raman spectra of hydrated multilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), its deuterated analog 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (DPPCd62), and DPPC-DPPCd62 mixtures were studied in a wide temperature range to specify the Raman indicators of conformational and lateral orders. The temperature dependence of the 985 cm−1 line in the deuterated phospholipid unequivocally indicates that this line corresponds to the CC stretching vibrations of deuterated hydrocarbon chains in the all-trans conformation. It was also concluded that the ratio of Raman intensities at the maximum of the peak of the symmetric CD2 stretching and at a maximum near 2168 cm−1 reflects the conformational order of the hydrocarbon chain and can be used for an evaluation of the fraction of the all-trans sequences. The frequency of the symmetric CD2 stretching peak is sensitive to the phase state (gel or fluid) but has a low sensitivity to the partial conformational disordering within the gel phase. The Raman study of DPPC-DPPCd62 mixtures reveals that the lateral order contributes to the ratio of intensities of the antisymmetric and symmetric CH2 stretching peaks as a prefactor enhancing the effect of conformational ordering.