The smoothing of linear toolpaths plays is critical in improving machining quality and efficiency in five-axis CNC machining. Existing corner-smoothing methods often overlook the impact of spline curvature fluctuations, which may lead to acceleration variations, hindering surface quality improvements. The paper presents a five-axis toolpath corner-smoothing method based on the space of master–slave movement (SMM), aiming to minimize curvature fluctuations in five-axis machining and improve surface quality. The concept of movement space in master–slave cooperative motion is introduced, where the tool tip position and tool orientation are decoupled into a main motion trajectory and two master–slave movement space trajectories. By deriving the curvature monotony conditions of a dual Bézier spline, a G2-continuous tool tip corner-smoothing curve with minimal curvature fluctuations is constructed in real-time. Subsequently, using the SMM and the asymmetric dual Bézier spline, a high-order continuous synchronization relationship between the tool tip position and tool orientation is established. Simulation tests and machining experiments show that with our smoothing algorithm, maximum acceleration values for each axis were reduced by 21.05%, while jerk was lowered by 22.31%. These results indicate that trajectory smoothing significantly reduces mechanical vibrations and improves surface quality.
Read full abstract