The purpose of this study was to assess rural students’ computational thinking abilities. The following proofs were observed: (1) Students’ abstraction affected algorithmic thinking skills; (2) Students’ decomposition influenced algorithmic thinking skills; (3) Students’ abstraction impacted evaluation skills; (4) Students’ algorithmic thinking affected evaluation skills; (5) Students’ abstraction impacted generalization skills; (6) Students’ decomposition impacted generalization skills; (7) Students’ evaluation affected generalization skills. Gender differences were observed in the relationship among the computational thinking factors of junior high school students. This included the abstraction-generalization skills; evaluation-generalization skills; and decomposition-generalization skills relationships, which were moderated by the gender of the students. 258 valid surveys were collected, and they were utilized in the study. Conducting the descriptive, reliability, and validity analyses used SPSS software, and the structural equation modeling (SEM) was also conducted through Smart PLS software to assess the hypothetical relationships. There were gender disparities in the correlation among computational thinking components of the junior high school students’ studying in rural areas. Research has shown that male and female students may have different abstractions, evaluations, and generalizations related to computational thinking, with females being more strongly associated than males in non-programming learning contexts. These results are expected to provide relevant information in subsequent analyses and implement a computational thinking curriculum to overcome the still-existing gender gaps and promote computational thinking skills.