Many solution algorithms for multiobjective optimization problems are based on scalarization methods that transform the multiobjective problem into a scalar-valued optimization problem. In this article, we study the theory of weighted p\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p$$\\end{document}-norm scalarizations. These methods minimize the distance induced by a weighted p\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p$$\\end{document}-norm between the image of a feasible solution and a given reference point. We provide a comprehensive theory of the set of eligible weights and, in particular, analyze the topological structure of the normalized weight set. This set is composed of connected subsets, called weight set components which are in a one-to-one relation with the set of optimal images of the corresponding weighted p\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p$$\\end{document}-norm scalarization. Our work generalizes and complements existing results for the weighted sum and the weighted Tchebycheff scalarization and provides new insights into the structure of the set of all Pareto optimal solutions.
Read full abstract