Decomposition algorithms and surrogate model methods are frequently employed to address large-scale, intricate optimization challenges. However, the iterative resolution phase inherent to decomposition algorithms can potentially alter the background vector, leading to the repetitive evaluation of samples across disparate iteration cycles. This phenomenon significantly diminishes the computational efficiency of optimization. Accordingly, a novel approach, designated the Sample Point Transformation Algorithm (SPTA), is put forth in this paper as a means of enhancing efficiency through a process of mathematical deduction. The mathematical deduction reveals that the difference between sample points in each iteration loop is a simple function related to the inter-group dependent variables. Consequently, the SPTA method achieves the comprehensive transformation of the sample set by establishing a surrogate model of the difference between the sample sets of two cycles with a limited number of sample points, as opposed to conducting a substantial number of repeated samplings. This SPTA is employed to substitute the most time-consuming step of direct calculation in the classical optimization process. To validate the calculation efficiency, a series of numerical examples were conducted, demonstrating an improvement of approximately 75 % while maintaining optimal accuracy. This illustrates the advantage of the SPTA in addressing large-scale and complex optimization problems.