Present study focuses on the use of a biodegradable and cost-effective cation exchanger for removal of Cr (VI) metal ions from water sources. Semi-IPN was prepared through grafting of acrylamide onto agar-polyvinyl alcohol backbone in presence of boric acid and ammonium per sulphate as crosslinker-initiator system. Graft copolymer was converted to cation exchanger through phosphorylation. Characterization was done using methods such as FTIR, SEM-EDX and XRD. Semi-IPN exhibited higher thermal resistance. The findings revealed that the optimum conditions for Cr (VI) removal are pH = 4.0; contact time (min) = 360; adsorbent dose (mg) = 125 and metal ion concentration(mg/L) =2. The adsorption kinetics of Cr (VI) ions are best fit by the pseudo second order kinetic with 0.99 R2 and Kf (rate constant) was found to be 0.97 thereby supporting the Freundlich isotherm. The adsorption isotherm models used in this study were consistent with the Freundlich model, but the pseudo second order model was the most accurate description of the adsorption kinetics. The present investigation showed an excellent potential with 85 % adsorption capacity for the removal of Cr (VI). Moreover, reusability studies showed that the cation exchanger can be used effectively up to four cycles.
Read full abstract