Multiple myeloma (MM) is a plasma cell malignancy occurring in middle and old age. MM is still an incurable disease due to its frequent recurrence and drug resistance. However, its pathogenesis is still unclear. Abnormal amino acid metabolism is one of the important characteristics of MM, and the important metabolic pathway of amino acids participates in protein synthesis as basic raw materials. Aminoacyl transfer ribonucleic acid synthetase (ARS) gene is a key regulatory gene in protein synthesis. This study aims to explore the molecular mechanism for ARS, a key factor of amino acid metabolism, in regulating amino acid metabolism in MM and affecting MM growth. The corresponding gene number was combined with the gene expression profile GSE5900 dataset and GSE2658 dataset in Gene Expression Omnibus (GEO) database to standardize the gene expression data of ARS. GSEA_4.2.0 software was used to analyze the difference of gene enrichment between healthy donors (HD) and MM patients in GEO database. GraphPad Prism 7 was used to draw heat maps and perform data analysis. Kaplan-Meier and Cox regression model were used to analyze the expression of ARS gene and the prognosis of MM patients, respectively. Bone marrow samples from 7 newly diagnosed MM patients were collected, CD138+ and CD138- cells were obtained by using CD138 antibody magnetic beads, and the expression of ARS in MM clinical samples was analyzed by real-time RT-PCR. Human B lymphocyte GM12878 cells and human MM cell lines ARP1, NCI-H929, OCI-MY5, U266, RPMI 8266, OPM-2, JJN-3, KMS11, MM1.s cells were selected as the study objects. The expression of ARS in MM cell lines was analyzed by real-time RT-PCR and Western blotting. Short hairpin RNA (shRNA) lentiviruses were used to construct gene knock-out plasmids (VARS-sh group). No-load plasmids (scramble group) and gene knock-out plasmids (VARS-sh group) were transfected into HEK 293T cells with for virus packaging, respectively. Stable expression cell lines were established by infecting ARP1 and OCI-MY5 cells, and the effects of knockout valyl-tRNA synthetase (VARS) gene on proliferation and apoptosis of MM cells were detected by cell counting and flow cytometry, respectively. GEO data were divided into a high expression group and a low expression group according to the expression of VARS. Bioinformatics analysis was performed to explore the downstream pathways affected by VARS. Gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) and high performance liquid chromatography (HPLC) were used to detect the valine content in CD138+ cells and ARP1, OCI-MY5 cells and supernatant of knockdown VARS gene in bone marrow samples from patients, respectively. Gene enrichment analysis showed that tRNA processing related genes were significantly enriched in MM compared with HD (P<0.0001). Further screening of tRNA processing-pathway related subsets revealed that cytoplasmic aminoacyl tRNA synthetase family genes were significantly enriched in MM (P<0.0001). The results of gene expression heat map showed that the ARS family genes except alanyl-tRNA synthetase (AARS), arginyl-tRNA synthetase (RARS), seryl-tRNA synthetase (SARS) in GEO data were highly expressed in MM (all P<0.01). With the development of monoclonal gammopathy of undetermined significance (MGUS) to MM, the gene expression level was increased gradually. Kaplan-Meier univariate analysis of survival results showed that there were significant differences in the prognosis of MM patients in methionyl-tRNA synthetase (MARS), asparaginyl-tRNA synthetase (NARS) and VARS between the high expression group and the low expression group (all P<0.05). Cox regression model multivariate analysis showed that the high expression of VARS was associated with abnormal overall survival time of MM (HR=1.83, 95% CI 1.10 to 3.06, P=0.021). The high expression of NARS (HR=0.90, 95% CI 0.34 to 2.38) and MARS (HR=1.59, 95% CI 0.73 to 3.50) had no effect on the overall survival time of MM patients (both P>0.05). Real-time RT-PCR and Western blotting showed that VARS, MARS and NARS were highly expressed in CD138+ MM cells and MM cell lines of clinical patients (all P<0.05). Cell counting and flow cytometry results showed that the proliferation of MM cells by knockout VARS was significantly inhibited (P<0.01), the proportion of apoptosis was significantly increased (P<0.05). Bioinformatics analysis showed that in addition to several pathways including the cell cycle regulated by VARS, the valine, leucine and isoleucine catabolic pathways were upregulated. Non-targeted metabolomics data showed reduced valine content in CD138+ tumor cells in MM patients compared to HD (P<0.05). HPLC results showed that compared with the scramble group, the intracellular and medium supernatant content of ARP1 cells and the medium supernatant of OCI-MY5 in the VARS-shRNA group was increased (all P<0.05). MM patients with abnormal high expression of VARS have a poor prognosis. VARS promotes the malignant growth of MM cells by affecting the regulation of valine metabolism.
Read full abstract