AC-etched aluminum foils for an Al electrolytic capacitor were covered with a TiO2 film by a sol–gel coating and then anodized to 25 V in an ammonium adipate solution. The structure, properties, and performance of the anodic oxide films were examined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), electrochemical impedance measurements (EIS), a general digital LCR meter, a TV characteristic tester, and multicycle pulse charging–discharging. It was found that the anodizing of aluminum coated with TiO2 films led to the formation of Al-Ti composite anodic oxide films, which consist of an outer Al-Ti composite oxide layer and an inner Al2O3 layer on the metal substrate. The capacitance (C25V) of the anodic oxide films formed on specimens with a TiO2 coating was about 10% larger than without a TiO2 coating. The specific resistance (Rox) of the Al-Ti composite film measured by EIS was lower than the blank one, accounting for a greater increase in the rise time (Tr) and a slight reduction in the withstand voltage (Vt). After hydration and a multicycle pulse charging–discharging destructive test, the Al-Ti composite anodic oxide film maintained the same good, comprehensive dielectric properties and performance as the blank one, thereby proving to be promising for acting as dielectric layers.
Read full abstract