Graphs are useful for analysing the structure models in computer science, operations research, and sociology. The word metric dimension is the basis of the distance function, which has a symmetric property. Moreover, finding the resolving set of a graph is NP-complete, and the possibilities of finding the resolving set are reduced due to the symmetric behaviour of the graph. In this paper, we introduce the idea of the edge-multiset dimension of graphs. A representation of an edge is defined as the multiset of distances between it and the vertices of a set, B⊆V(Γ). If the representation of two different edges is unequal, then B is an edge-multiset resolving a set of Γ. The least possible cardinality of the edge-multiset resolving a set is referred to as the edge-multiset dimension of Γ. This article presents preliminary results, special conditions, and bounds on the edge-multiset dimension of certain graphs. This research provides new insights into structure models in computer science, operations research, and sociology. They could have implications for developing computer algorithms, aircraft scheduling, and species movement between regions.