Urbanization and industrialization are exponentially deteriorating air quality, ecosystems, and human health. Phytoremediation is cost cost-effective, sustainable, and nature-based solution against air pollution. This study is designed to evaluate four species, Chlorophytum comosum, Rhapis excelsa, Spathiphyllum wallisii, and Ficus benjamina for their phytoremediation potential. The experimental setup consisted of a sealed chamber to place potted plants and equipment, it was also connected to the vehicular exhaust pipe. The Air Pollution Tolerance Index was highest for F. benjamina (12.19) and lowest for Rhapis excels (8.58). C. comosum has the highest VOC removal efficiency (90%, 0.172 ppm h−1). NOx remediation was highest by F. benjamina with 0.057 ppm h−1 (77%) removal efficiency. SOx and CO were remediated more efficiently by C. comosum, as 89%, (0.18 ppm h−1) and 80% (0.23 ppm h−1), respectively. R. excelsa reduced a higher concentration of NH3 (77%, 0.06 ppm h−1) compared to other species. R. excelsa and S. wallisii may serve as bio-indicator species. These findings provide a sustainable, natural, economical, and eco-friendly way to mitigate air pollution. F. benjamina and C. comosum are suitable species for urban landscapes, green spaces, urban plantations, and green walls to curb air pollutants due to traffic and industries.
Read full abstract