Soil–water characteristics curves (SWCC) have proved useful in estimating parameters used in modeling unsaturated geotechnical properties of soils including permeability and strength. Either saturation, gravimetric, and instantaneous and initial volumetric water content designation can be used to develop SWCCs. Studies have shown that any of the designations will give good estimates for soils that do not undergo volume change with suction change whereas, for soils that undergo substantial volume change, only saturation and instantaneous volumetric water content designation obtained by incorporating shrinkage curves can give correct estimates. Transition oil sands tailings have fines content that cannot be categorized as sandy or fine materials, and research on volume change with suction change in these materials is limited. In this study, HyProps, Tempe cells, and a chilled-mirror water potential meter were used to measure suction and corresponding water contents for samples that were prepared by mixing coarse sand and Fluid Tailing by ratios that mimic transition zone tailings. Shrinkage tests were also performed to observe the extent of volume change with suction increase. Air Entry Values (AEV) estimated from SWCCs based on gravimetric water content were found to be lower than those estimated from saturation-based SWCCs due to substantial volume changes in these materials with suction increase. The use of saturation water content designation is recommended in estimating AEV for transitional oil sands tailings. This is useful information in predicting the long term unsaturated geotechnical behavior of these materials for environmental management and safety purposes.