The present work aims to compare two different subsurface hydrological models, namely HYDRUS and MODFLOW UZF package, in terms of groundwater recharge; thus, both models were coupled with MODFLOW. The study area is an experimental kiwifruit orchard located in the Arta plain in the Epirus region of Greece. A novel conceptual framework is introduced in order to (i) use in situ and laboratory measurements to estimate parameter values for both sub-surface flow models; (ii) couple the developed models with MODFLOW to estimate groundwater recharge; and (iii) compare and evaluate the performance of both approaches, with differences stemming from the distinctive equations describing the flow in the unsaturated zone. Detailed soil investigation was conducted in two soil horizons in the research field to identify soil texture zones, along with infiltration experiments implementing both double-ring and single-ring infiltrometers. The results of the field measurements indicate that fine-textured soils are predominant within the field, affecting several hydrological processes, such as infiltration, drainage, and root water uptake. Field measurements were incorporated in unsaturated zone flow modeling and the infiltration fluxes were simulated with the application of both the UZF package of MODFLOW and the HYDRUS code. The two codes presented acceptable agreement between the simulated and observed hydraulic head values with a similar performance in terms of statistics; however, they produced different results regarding recharge rates in the aquifer as simulated by MODFLOW. HYDRUS produced higher hydraulic head values in the aquifer throughout the simulation, related to higher recharge rates arising from the root water uptake and the capillary effects that are computed by HYDRUS but neglected by the UZF package of MODFLOW.
Read full abstract