The physiological role of vascular β3 -adrenoceptors is not fully understood. Recent evidence suggests cardiac β3 -adrenoceptors are functionally effective after down-regulation of β1 /β2 -adrenoceptors. The functional interaction between the β3 -adrenoceptor and other β-adrenoceptor subtypes in rat striated muscle arteries was investigated. Studies were performed in cremaster muscle arteries isolated from male Sprague-Dawley rats. β-adrenoceptor expression was assessed through RT-PCR and immunofluorescence. Functional effects of β3 -adrenoceptor agonists and antagonists and other β-adrenoceptor ligands were measured using pressure myography. All three β-adrenoceptor subtypes were present in the endothelium of the cremaster muscle artery. The β3 -adrenoceptor agonists mirabegron and CL 316,243 had no effect on the diameter of pressurized (70 mmHg) cremaster muscle arterioles with myogenic tone, while the β3 -adrenoceptor agonist SR 58611A and the nonselective β-adrenoceptor agonist isoprenaline caused concentration-dependent dilation. In the presence of β1/2 -adrenoceptor antagonists nadolol (10 μM), atenolol (1 μM) and ICI 118,551 (0.1 μM) both mirabegron and CL 316,243 were effective in causing vasodilation and the potency of SR 58611A was enhanced, while responses to isoprenaline were inhibited. The β3 -adrenoceptor antagonist L 748,337 (1 μM) inhibited vasodilation caused by β3 -adrenoceptor agonists (in the presence of β1/2 -adrenoceptor blockade), but L 748,337 had no effect on isoprenaline-induced vasodilation. All three β-adrenoceptor subtypes were present in the endothelium of the rat cremaster muscle artery, but β3 -adrenoceptor mediated vasodilation was only evident after blockade of β1/2 -adrenoceptors. This suggests constitutive β1/2 -adrenoceptor activity inhibits β3 -adrenoceptor function in the endothelium of skeletal muscle resistance arteries.
Read full abstract