The hippocampus is important for social behavior and exhibits unusual structural plasticity in the form of continued production of new granule neurons throughout adulthood, but it is unclear how adult neurogenesis contributes to social interactions. In the present study, we suppressed neurogenesis using a pharmacogenetic mouse model and examined social investigation and aggression in adult male mice to investigate the role of hippocampal adult-born neurons in the expression of aggressive behavior. In simultaneous choice tests with stimulus mice placed in corrals, mice with complete suppression of adult neurogenesis in adulthood (TK mice) exhibited normal social investigation behaviors, indicating that new neurons are not required for social interest, social memory, or detection of and response to social olfactory signals. However, mice with suppressed neurogenesis displayed decreased offensive and defensive aggression in a resident-intruder paradigm, and less resistance in a social dominance test, relative to neurogenesis-intact controls, when paired with weight and strain-matched (CD-1) mice. During aggression tests, TK mice were frequently attacked by the CD-1 intruder mice, which never occurred with WTs, and normal CD-1 male mice investigated TK mice less than controls when corralled in the social investigation test. Importantly, TK mice showed normal aggression toward prey (crickets) and smaller, nonaggressive (olfactory bulbectomized) C57BL/6J intruders, suggesting that mice lacking adult neurogenesis do not avoid aggressive social interactions if they are much larger than their opponent and will clearly win. Taken together, our findings show that adult hippocampal neurogenesis plays an important role in the instigation of intermale aggression, possibly by weighting a cost-benefit analysis against confrontation in cases where the outcome of the fight is not clear.
Read full abstract