Here, it is shown that photoirradiation triggered chiral J-aggregates formation of an achiral anionic porphyrin, TPPS (tetrakis(4-sulfonatophenyl) porphyrin), in the presence of chiral triphenylamine (TPA) derivatives. A series of chiral triarylamines linked with aromatic rings is designed through urea or amide bonds. UV-irradiation of self-assembled urea-linked triphenylamine derivatives causes the formation of persistent radical cations in the chlorinated solvents, which subsequently induces the aggregation of TPPS. Transferring chirality of TPA derivatives to achiral TPPS J-aggregates leads to the chiral assemblies with remarkable chiroptical signals. The experimental results demonstrate that, TPA derivatives linked by the urea bond can effectively promote the aggregation of TPPS rather than those with the amide bond although the photo-generated radical cations are both produced. It is suggested that the urea-linked TPA derivatives are more favorable to stable radical cations and thus cause the formation of TPPS chiral J-aggregation. This work may open up an avenue for designing photo-modulated chiral supramolecular assemblies.
Read full abstract