Microplastics (MiPs) can potentially influence soil structural stability, with impacts likely dependent on their chemistry, concentration, size, and degradation in soil. This study used high-energy moisture characteristics (HEMC; water retention at matric suctions from 0 to 50 hPa) to quantify the effects of these MiP properties on soil structure stabiltiy. The HEMCs of soil samples contaminated with polypropylene (PP) or polyethylene (PE) were measured and modelled. Greater MiP concentrations (2 % and 7 % w w−1) increased the volume of drainable pores (VDP). At smaller MiP concentrations (0.5 % and 1 % w w−1), larger MiP fibres (3 and 5 mm) exhibited higher VDP values compared to a smaller size (1.6 mm) across a range of concentrations. Both PE and PP MiPs increased the modal matric suction (hmodal). The impacts on VDP and hmodal were more pronounced for fast than slow wetting, likely due to MiPs fibres entangling around soil aggregates, and MiPs pores filling after aggregate slaking, respectively. Soil structural index (SI) and stability ratio (SR) values increased following MiP incorporation. Our findings revealed the detrimental impacts of MiPs on soil aggregates and pores, demonstrating that MiPs significantly influence HEMC parameters due to combined impacts on structure stability and pore distribution. Environmental implicationMicroplastics have emerged as a major anthropogenic hazardous material in the soil environment, with secondary impacts on soil structure and aggregate stability. Our study indicates that MiPs alter water retention, pore distribution, and soil hydraulic properties, affecting soil’s ability to retain and supply water. The introduction of MiPs leads to the destruction of soil aggregates and pores, compromising soil health and productivity. By characterising structural stability and pore structure dynamics using HEMC, this study highlights the sensitivity of MiP impacts, emphasizing the need for comprehensive assessment and strategies to preserve soil ecosystem functioning in the face of increasing MiP pollution.
Read full abstract