Background: Green cardamom (Elettaria cardamomum (L.) Maton), a member of the Zingiberaceae family, is widely recognized for its use as a spice and traditional medicine. It is commonly used for treating gastric, cardiac, and kidney disorders, as well as infections and inflammatory conditions. Cardamom essential oil, known for its high content of bioactive compounds such as 1,8-cineole and α-terpinyl acetate, has been studied for its diverse biological activities, including antioxidant, antibacterial, anti-inflammatory, and anticancer effects. However, little is known about its anticancer potential against MDA-MB-231 (triple-negative breast cancer), U87 (glioblastoma), and HEK 293 (kidney) cell lines, especially in the context of cardamom oil sourced from Iraq. Methods: Cardamom essential oil was extracted via hydro-distillation from cardamom fruits collected in Erbil, Iraq, and its chemical composition was analyzed using gas chromatography-mass spectrometry (GC-MS). The oil’s anticancer activity was evaluated using the MTT assay against MDA-MB-231, U87, and HEK 293 cell lines. The cells were treated with various concentrations of cardamom essential oil, and cell viability was measured after 24 hours. The IC50 values were calculated to determine the oil’s efficacy. Results: GC-MS analysis revealed 33 compounds in the essential oil, with 1,8-cineole (42.37%) and α-terpinyl acetate (22.14%) being the predominant constituents. The MTT assay demonstrated that cardamom essential oil significantly reduced cell viability in MDA-MB-231 and HEK 293 cell lines in a dose-dependent manner, with IC50 values of 96.95 µl/ml and 157.44 µl/ml, respectively. However, the oil was less effective against U87 cells, showing only 40.67% inhibition at the highest concentration (500 µl/ml). Conclusion: Cardamom essential oil, rich in 1,8-cineole and α-terpinyl acetate, exhibited strong anticancer activity against MDA-MB-231 and HEK 293 cell lines, highlighting its potential as a therapeutic agent for triple-negative breast cancer. Further studies are needed to explore its full potential and mechanisms of action against different cancer types.