Continental deep subduction after the closure of large oceanic basins is commonly ascribed to the gravitational pull of the subducting oceanic slab. However, it is not clear how continental lithosphere adjacent to small oceanic basins was subducted to mantle depths. The Sesia Zone in the Western Alps provides an excellent target for exploration of subduction dynamics in such a tectonic setting. Here we report the first finding of coesite in a jadeite-bearing orthogneiss from the Sesia Zone, providing the first evidence for deep subduction of the continental crust to mantle depths for ultrahigh-pressure (UHP) metamorphism in this zone. Three coesite inclusions were identified by laser Raman spectroscopy in two garnet grains. Based on zircon U-Pb dating and trace element analysis, the UHP metamorphic age was constrained to be 76.0±1.0 Ma. The phase equilibrium modeling yields peak metamorphic pressures of 2.8-3.3GPa, demonstrating the continental deep subduction to mantle depths of >80km. The subducted continental crust was a rifted hyperextended continental margin, which was converted to the passive continental margin during seafloor spreading and then deeply subducted during the oblique convergence between the Adria microplate and Eurasian plate in the Late Cretaceous. Because the slab pull could only play a limited role in closing small oceanic basins for continental collision, the distal push of either continental breakup or seafloor spreading is suggested as the major driving force for the deep subduction of continental crust in the Western Alps. Therefore, deep subduction of the continental crust bordering small oceanic basins would have been induced by the far-field stress of compression, whereas that bordering large oceanic basins was spontaneous due to the oceanic slab pull. This provides a new insight into the geodynamic mechanism of continental deep subduction.
Read full abstract