Blood is commonly discovered at crime scenes in various forms, including stains, dried residue, pools, and fingerprints on assorted surfaces. Estimating the age of bloodstains is a crucial aspect of reconstructing crime scenes. This research aimed to investigate how the nature of different surfaces affects the estimation of bloodstain age, utilizing a reliable and non-destructive approach. The study employed ATR-FTIR spectroscopy in conjunction with Chemometric techniques such as PCA (Principal Component Analysis) and OPLSR (Orthogonal Signal Correction Partial Least Square Regression Analysis) to analyze spectral data and develop regression models for estimating bloodstain age on cement, metal, and wooden surfaces for up to eleven days. The chemometric models for bloodstains on all three substrates demonstrated strong performance, with predictive Root Mean Square Error (RMSE) values ranging from 1.1 to 1.43 and R2 values from 0.84 to 0.89. Notably, the model developed for metal surfaces was found to be the most accurate with minimal prediction error. The findings of the study showed that the porosity of the substrates upon which bloodstains were found had a discernible influence on the age-related transformations observed in bloodstains; the majority of which occured within the spectral range of 2800cm- 1 to 3500cm- 1.
Read full abstract