Steel–concrete continuous composite beams are widely used in buildings and bridges and have many economic benefits. Slip has always existed in composite beams and will reduce the stiffness of composite beams. The effect of creep under a long-term load will also be harmful. Many scholars ignore the combined effects of slip and creep. In order to more accurately study the mechanical properties of steel–concrete continuous composite beams under long-term loads, this paper will consider the combined actions of slip and creep. By combining the elastic theory and the age-adjusted effective modulus method, the differential equation of the composite beam is derived via the energy variational method. The analytical solutions of axial force, deflection and slip under a uniform load are obtained by substituting the relevant boundary conditions. The creep equation is used to simulate the behavior of concrete with time in ANSYS. The analytical solution is verified by establishing a finite element model of continuous composite beams considering slip and creep. The results suggest the following: the analytical solution is consistent with the finite element simulation results, which verifies the correctness of the analytical solution. Considering the slip and creep effects will increase the deflection of the composite beam and the bending moment of the steel beam, reduce the bending moment of the concrete slab and have a significant impact on the structural performance of the continuous composite beam. The research results considering the coupling effect of slip and creep on continuous composite beams can provide a theoretical basis for related problems.
Read full abstract