To reduce the risk of adsorption of granular activated carbon (AC) in the gastrointestinal tract, we successfully prepared a hollow-type spherical bacterial cellulose gel encapsulated with AC (ACEG) and evaluated its pH tolerance and adsorption capacity. The bacterial cellulose gel membrane of ACEG features a three-dimensional mesh structure of cellulose fibers, allowing the selective permeation of substances based on their size. In this study, the preparation method of ACEGs was investigated, and the indole saturation adsorption capacity of the obtained gel was measured. We modified the gel culture nucleus gel from calcium alginate gel to agar gel, facilitating the encapsulation of previously challenging particles. The new preparation method used sodium hydroxide solution for sterilization and dissolution to remove the debris of Komagataeibacter xylinus, which was feared to remain in the bacterial cellulose membrane. This treatment was also confirmed to have no effect on the adsorption capacity of the AC powder. Therefore, this new preparation method is expected not only to improve the performance of ACEGs but also to be applied to a wide range of adsorbent-encapsulated hollow-type bacterial cellulose gels.