In this study, experimental reactors for cathodic nitrogen plasma electrolysis were designed by the composition of galvanic (voltaic) and electrolytic cells with wide and narrow connectors filled with tap water and agar solutions. The designed reactor can be used to simultaneously perform and manage nitrification in acidic and alkaline environments. According to the reactor’s performance, it can be installed on the irrigation system and used depending on the soil pH of the fields for delivering water and nitrogen species that are effective in growth. The nitrification process was investigated by choosing the optimal reactor with a wide connector based on different changes in oxidation-reduction potential and pH on the anode and cathode sides. The nitrite concentration changed directly with ammonium and nitrate concentrations on the cathode side. It changed inversely and directly with ammonium and nitrate concentrations on the anode side respectively. Nitrite concentration decreased from 5.387 ppm with water connector, to 0.326 ppm with 20% agar solution, and 0.314 ppm with 30% agar solution connectors on the anode side. It increased from 0 ppm to 0.191 ppm with a water connector, 0.405 ppm with 20% agar solution, and 7.454 ppm with 30% agar solution connectors on the cathode side.
Read full abstract