AbstractEnhancement of “heat transfer” using “nanofluid” has diverse potential applications in heat exchangers, thermal management of electric devices, cooling of tractors, solar thermal systems, manufacturing of paper, and many others. Hence, the aim of the current investigation is to explore the impacts of “mixed convection” on “nanofluid flow” over a permeable rotating disk, which is stretched radially in a porous medium. Variable wall “temperature” and “convective boundary conditions” are also considered here. This makes the present investigation different from others. The suitable “similarity transformations” are imposed to alter the governing partial differential equations into a set of coupled ordinary differential equations (ODEs). Then, these ODEs are solved numerically by the “4th order Runge‐Kutta method” using the “shooting technique” with the help of the bvp4c package in MATLAB software. The effects of fluid controlling “parameters” on “flow and thermal fields” as well as “skin friction coefficient” and “Nusselt number” are presented graphically and explained physically. Due to enhanced rotation of the disk, the radial and azimuthal velocity of the fluid increase and the temperature of the fluid decreases. Most importantly, it is observed that when the disk rotates faster than the stretching rate, the temperature of the nanofluid decreases rapidly, which has wider applications for cooling purposes. It is also noted that when the suction parameter increases its value from −1 to 1, for Ag–water nanofluid, the “skin friction coefficient” decreases by 73.56%, and the Nusselt number also decreases by 24.11%, and for Fe3O4–water nanofluids, the “skin friction coefficient” decreases by 71.25% and the Nusselt number decreases by 24.47%.