Research on lemon grass (Cymbopogon citratus L.) revealed a variety of active molecules and examined their biological characteristics. However, most of these studies were conducted on wild varieties, while cultivated plants were addressed less. This study aimed to characterize the biomolecules and biological activities of lemon grass growing under North African conditions in Morocco. Phenolic compound profiles of aqueous (AE), ethanol (EE), and methanol (ME) extracts and their fractions were obtained with steric exclusion chromatography on Sephadex G50 gel and identified by LC-MS/MS. Then, total polyphenols (TPC), flavonoids (TFC), and antioxidant activities (FRAP: scavenging value and TAC: Total Antioxidant Capacity) of the fraction were evaluated, as well as the antimicrobial activity. The obtained results showed that the ME contained eight major compounds (i.e., apigenine-7-O-rutinoside and myricitine-3-O-rutinoside). The AE showed the presence of five molecules (i.e., kaempferol-3-O-glucuronide), while EE showed the presence of three molecules (i.e., quercetine-3-O-rutinoside). Regarding the chemical characterization, the highest value of total phenolic content (TPC) was obtained in AE (25) (4.60 ± 0.29 mg/g), and the highest value of total flavonoid content (TFC) was obtained in ME (29) (0.7 ± 0.08 mg/g). Concerning the antioxidant activity, the highest FRAP was obtained in ME (29) (97.89%), and the highest total antioxidant capacity (TAC) was obtained in ME (29) (89.89%). Correlation between FRAP, TPC, and TFC was noted only in fractions of AE and ME. All tested extracts of C. citratus and their fractions showed a significant antimicrobial effect. The lowest minimum inhibitory concentration (MIC) was recorded for ME against E. coli. Extracts' biological activities and their fractions were governed by their active molecules. These data are new and clarify a novel aspect of bioactive molecules in the extracts of cultivated C. citratus. Equally, throughout this research, we clarified the relationship between identified molecules and their biological properties, including antioxidant and anti-microbial activities, which is new for the study area. This study is suggested as a reference for comparative studies and other assays of other biological activities for the study plant.
Read full abstract