Geometry of affine immersions is the study of hypersurfaces that are invariant under affine transformations. As with the hypersurface theory on the Euclidean space, an affine immersion can induce a torsion-free affine connection and a (pseudo)-Riemannian metric on the hypersurface. Moreover, an affine immersion can induce a statistical manifold, which plays a central role in information geometry. Recently, a statistical manifold with a complex structure is actively studied since it connects information geometry and Kähler geometry. However, a holomorphic complex affine immersion cannot induce such a statistical manifold with a Kähler structure. In this paper, we introduce complex affine distributions, which are non-integrable generalizations of complex affine immersions. We then present the fundamental theorem for a complex affine distribution, and show that a complex affine distribution can induce a statistical manifold with a Kähler structure.
Read full abstract