This paper proposes a two-level, data-driven, digital twin concept for the autonomous landing of aircraft, under some assumptions. It features a digital twin instance (DTI) for model predictive control (MPC); and an innovative, real-time, digital twin prototype for fluid-structure interaction and flight dynamics to inform it. The latter digital twin is based on the linearization about a pre-designed glideslope trajectory of a high-fidelity, viscous, nonlinear computational model for flight dynamics; and its projection onto a low-dimensional approximation subspace to achieve real-time performance, while maintaining accuracy. Its main purpose is to predict in realtime, during flight, the state of an aircraft and the aerodynamic forces and moments acting on it. Unlike static lookup tables or regression-based surrogate models based on steady-state wind tunnel data, the aforementioned real-time digital twin prototype allows the DTI for MPC to be informed by a truly dynamic flight model, rather than a less accurate set of steady-state aerodynamic force and moment data points. The paper describes in detail the construction of the proposed two-level digital twin concept and its verification by numerical simulation. It also reports on its preliminary flight validation in autonomous mode for an off-the-shelf unmanned aerial vehicle instrumented at Stanford University. This article is part of the theme issue 'Data-driven prediction in dynamical systems'.
Read full abstract