Adverse events in early life can have impact lasting into adulthood. We investigated the long-term effects of systemic inflammation during postnatal development on adult microglial responses to LPS in two CNS regions (cortex, cervical spinal cord) in male and female rats. Inflammation was induced in Sprague-Dawley rats by lipopolysaccharide (LPS, 1 mg/kg) administered intraperitoneally during postnatal development at P7, P12 or P18. As adults (12 weeks of age), the rats received a second LPS dose (1 mg/kg). Control rats received saline. Microglia were isolated 3 hours post-LPS from the cortex and cervical spinal cord. Gene expression was assessed via qRT-PCR for pro-inflammatory (IL-6, iNOS, Ptgs2, C/EBPb, CD14, CXCL10), anti-inflammatory (CD68, Arg-1), and homeostatic genes (P2Y12, Tmemm119). CSF-1 and CX3CL1 mRNA was analyzed in microglia-free homogenates. Basal gene expression in adult microglia was largely unaffected by early life LPS. Changes in adult microglial pro-inflammatory genes in response to LPS were either unchanged or attenuated in rats exposed to LPS during postnatal development. Ptgs2, C/EBPb, CXCL10 and Arg-1 were the genes most affected, with expression levels significantly downregulated vs control rats without postnatal LPS exposure. Cortical microglia were affected more by postnatal inflammation than spinal microglia, and males were more impacted than females. Overall, inflammatory challenge at P18 had the greatest effect on adult microglial gene expression, whereas challenge at P7 had less impact. Microglial homeostatic genes were unaffected by postnatal LPS. Long-lasting effects of postnatal inflammation on adult microglia depend on the timing of postnatal inflammation, CNS region and sex.
Read full abstract