The disintegration process of pharmaceutical solid dosage forms commences on contact with the dissolution medium and continues with subsequent spontaneous imbibition of the medium in the tablet matrix. Identifying the location of the liquid front in situ during imbibition, therefore, plays a significant role in understanding and modelling the disintegration process. Terahertz pulsed imaging (TPI) technology can be used to investigate this process by its ability to penetrate and identify the liquid front in pharmaceutical tablets. However, previous studies were limited to samples suitable for a flow cell environment, i.e. flat cylindrical disk shapes; thus, most commercial tablets could only be measured with prior destructive sample preparation. This study presents a new experimental setup named open immersion to measure a wide range of pharmaceutical tablets in their intact form. Besides, a series of data processing techniques to extract subtle features of the advancing liquid front are designed and utilised, effectively increasing the maximum thickness of tablets that can be analysed. We used the new method and successfully measured the liquid ingress profiles for a set of oval convex tablets prepared from a complex eroding immediate-release formulation.
Read full abstract