Hyperpolarized (HP) magnetic resonance imaging (MRI) is a groundbreaking imaging platform advancing from research to clinical practice, offering new possibilities for real-time, non-invasive metabolic imaging. This review explores the latest advancements, challenges, and future directions of HP MRI, emphasizing its transformative impact on both translational research and clinical applications. By employing techniques such as dissolution Dynamic Nuclear Polarization (dDNP), Parahydrogen-Induced Polarization (PHIP), Signal Amplification by Reversible Exchange (SABRE), and Spin-Exchange Optical Pumping (SEOP), HP MRI achieves enhanced nuclear spin polarization, enabling in vivo visualization of metabolic pathways with exceptional sensitivity. Current challenges, such as limited imaging windows, complex pre-scan protocols, and data processing difficulties, are addressed through innovative solutions like advanced pulse sequences, bolus tracking, and kinetic modeling. We highlight the evolution of HP MRI technology, focusing on its potential to revolutionize disease diagnosis and monitoring by revealing metabolic processes beyond the reach of conventional MRI and positron emission tomography (PET). Key advancements include the development of novel tracers like [2-13C]pyruvate and [1-13C]-alpha-ketoglutarate and improved data analysis techniques, broadening the scope of clinical metabolic imaging. Future prospects emphasize integrating artificial intelligence, standardizing imaging protocols, and developing new hyperpolarized agents to enhance reproducibility and expand clinical capabilities particularly in oncology, cardiology, and neurology. Ultimately, we envisioned HP MRI as a standardized modality for dynamic metabolic imaging in clinical practice.
Read full abstract