The energy crisis has driven increased adoption of electric vehicles (EVs) in the automotive sector, with a focus on lightweight engineering plastics (EPs) for fuel efficiency. This study aims to enhance the mechanical properties and thermal conductivity of EPs to address heat-related concerns in EVs and electronic devices. A hybrid filler (milled glass fiber, boron nitride, and graphene oxide) was introduced to polyphenylene sulfide (PPS), using a simultaneous grafting process with poly(catechol/polyamine) (PCPA) and silane additives. Filler aggregation in the resin matrix was overcome with surface-treatment agents such as Bis[3-(triethoxysilyl)propyl] tetrasulfide (Si69), catechol, and tetraethylenepentamine. PCPA polymerization on the filler surfaces bridged connections between fillers and silane molecules. The resulting surface-treated hybrid composite showed a 637% increase in thermal conductivity (2.102 Wm−1K−1) and a 63.94% increase in tensile strength (65.87 MPa) compared to the base matrix. Incorporating 40 wt.% surface-treated mGF, 30wt.% raw BN, and 6wt.% surface-treated GO, along with PCPA and Si69 treatments, achieved this improvement. The hybrid filler composites significantly enhanced thermal conductivity and mechanical properties, providing a rapid and convenient solution to challenges in robustness and heat dissipation for electronic vehicles and devices.
Read full abstract