Thyroid hormones are essential for brain development, and a shortage throughout the fetal and postnatal periods can result in mood disorders. Perinatal exposure to bisphenol A (BPA) affects thyroid activity and dependent processes indirectly during pregnancy or early postnatal life. This is particularly important because it may cause changes in tissue ontogeny, increasing the risk of developing disorders later in life. The study aimed to investigate the consequences of thyroid hormone deficiency on anxiety, social, and depressive behaviors, as well as disruption in thyroid peroxidase (TPO) gene expression, which influences the NF-κB/Nrf-2/HO-1/iNOS signaling pathway, leading to oxidative stress, inflammation, and DNA fragmentation in perinatal BPA exposure (PND18), and whether these effects can be observed in juvenile (PND60) and adult (PND95) male offspring rats. BPA increased anxiety-like behavior while decreasing sucrose preference and sociability on a choice task between novel conspecific male rats and enhanced immobility on the forced swim test. Perinatal exposure to BPA causes thyroid insult by overproducing ROS, increasing iNOS, and NF-κB levels—these effects, in turn, down-regulate Nrf-2/HO-1 signaling, resulting in DNA fragmentation within thyroid tissues. Furthermore, perinatal BPA exposure for 60 and 95 days resulted in a significant fold decrease in TPO mRNA levels in the thyroid tissues, with an insignificant fold rise in TPO expression levels in BPA 50–60. In conclusion, the present study found that perinatal BPA exposure induced thyroid allostasis-adaptive response by inhibiting the NF-κB/Nrf-2/HO-1/iNOS signaling pathway and altering the transcriptional expression of TPO, where TSH reinforced a possible association with TPO activity, disrupting thyroid hormone synthesis in juvenile rats and gradual deterioration reaching the adult stage.
Read full abstract