The gene () encodes a transcription factor belonging to the MEF2 family that plays an important role in myogenesis by transcriptional regulation of genes involved in skeletal muscle growth and development. Despite the established importance of the factors in the muscular growth and development, the temporal-spatial expression and biological function of have not been reported in cattle. The aim of this study was to analyze the level of expression in the developing longissimus dorsi muscle (LM) of 4 cattle breeds (Polish Holstein-Friesian [HF], Limousine [LIM], Hereford [HER], Polish Red [PR]), differing in terms of meat production and utility type, at 6, 9, and 12 mo of age. The genetic polymorphism and expression patterns in 6 tissues (heart, spleen, liver, semitendinosus muscle [ST], gluteus medius muscle [GM], and LM) were also investigated. The results showed that mRNA was expressed at a high level in adult skeletal and cardiac muscles. Moreover, expression was markedly greater in the GM than in the LM ( 0.05) and ST ( 0.01). An age-dependent and breed-specific comparison of mRNA level in skeletal muscle of HF, LIM, HER, and PR bulls showed that age was significant differentiating factor of transcript/protein abundance in the LM of HER and LIM ( 0.001) compared to HF and PR, for which the differences in mRNA level were not significant ( > 0.05). Regarding the breed effect on the expression, significantly greater mRNA/protein level was noticed in the LM of 9 and 12 mo-old HER than of LIM ( 0.01), HF ( 0.001), and PR ( 0.001). Four novel SNP, namely, (promoter), (exon 7), (exon 8), and (3'UTR), were identified. We found that 3'UTR variant, situated within the seed region of the miR-5187-3p and miR-6931-5p binding sites, was associated with the level of mRNA/protein in LM of 12-mo-old HF bulls. In addition, we observed a significant association between some carcass quality traits, including meat and carcass fatness quality traits, and various 3'UTR genotypes in the investigated population of HF cattle. Our finding provides new evidence of the significant role in the postnatal muscle growth and development in cattle, and indicates that can be a promising molecular marker for carcass quality-related traits in adult cattle.
Read full abstract